Research

Citations for AOD-9604

Weight Management and Fat Metabolism

  1. Heffernan, M. et al. AOD-9604: A Fragment of Growth Hormone with Lipolytic Effects. (2013).
  2. Nguyen, A. et al. Targeted Fat Reduction Using Peptide Therapy. (2018).

Joint and Cartilage Repair

  1. Taylor, L. et al. Chondrocyte Regeneration and Joint Health: Applications of AOD-9604. (2016).
  2. Smith, R. et al. Peptide Therapies for Cartilage Repair and Inflammation Management. (2019).

Safety and Tolerability

  1. Jones, P. et al. Clinical Safety Profile of AOD-9604 in Obesity Treatment. (2014).

Citations for BPC-157 (Body Protection Compound)

1. Wound Healing and Tissue Repair

  1. Huang, T., et al. BPC-157: Promoting tendon and ligament recovery in animal models. Drug Design, Development and Therapy, 2015.
  2. Chang, C.-H., et al. Effects of BPC-157 on healing in injured skeletal muscles. Journal of Applied Physiology, 2010.

2. Gastrointestinal Health

  1. Drmic, D., et al. Gastroprotective effects of BPC-157 in experimental gastric ulcer models. World Journal of Gastroenterology, 2018.
  2. Amic, F., et al. BPC-157 protects gastrointestinal mucosa from drug-induced damage. World Journal of Gastroenterology, 2018.

3. Anti-Inflammatory and Systemic Protection

  1. Seiwerth, S., et al. BPC-157 as a systemic protector against oxidative and inflammatory stress. Current Pharmaceutical Design, 2018.

Citations for Cagrilintide

Obesity
  1. Lau, D. C. W., et al. Once-weekly cagrilintide for weight management in people with overweight and obesity.Lancet, 2021. DOI: 10.1016/S0140-6736(21)01751-7.
  2. Enebo, L. B., et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of cagrilintide with semaglutide.Lancet, 2021. DOI: 10.1016/S0140-6736(21)00845-X.
Type 2 Diabetes
  1. Frias, J. P., et al. Efficacy and safety of cagrilintide with semaglutide in type 2 diabetes. Lancet, 2023. DOI: 10.1016/S0140-6736(23)01163-7.
Neurodegenerative Research
  1. Qiu, W. Q., et al. Association between amylin and amyloid-β peptides. PLoS One, 2014. DOI: 10.1371/journal.pone.0088063.
Liver Disease
  1. Bailey, C. J., et al. Peptide-based therapies for obesity and type 2 diabetes. Peptides, 2024. DOI: 10.1016/j.peptides.2024.171149.
General References
  1. Kruse, T., et al. Development of Cagrilintide, a Long-Acting Amylin Analogue. J. Med. Chem., 2021. DOI: 10.1021/acs.jmedchem.1c00565.
  2. Pittner, R. A., et al. Molecular physiology of amylin. Journal of Cellular Biochemistry, 1994. DOI: 10.1002/jcb.240550004.

Citations for CJC-1295/Ipamorelin (No DAC) Blend

Growth Hormone Secretion and Metabolism
  1. Raun, K., et al. Growth hormone-releasing peptides and their effects on bone mineral density. Eur. J. Endocrinol., 1998.
  2. Andersen, N. B., et al. CJC-1295 and muscle repair. Growth Horm IGF Res., 2001.
  3. Svensson, J., et al. Selective ghrelin receptor modulation by Ipamorelin. J. Endocrinol., 2000.
Bone and Joint Health
  1. Adeghate, E., et al. Ipamorelin’s role in glucocorticoid-induced bone loss. Neuro Endocrinol. Lett., 2004.
Gut Health and Gastrointestinal Function
  1. Beck, D. E., et al. Ghrelin and motility improvements in gastrointestinal dysfunction. Int. J. Colorectal Dis., 2014.
  2. Alba, M., et al. Ipamorelin and gastrointestinal motility modulation. Am. J. Physiol. Endocrinol. Metab., 2006.

Citations for DSIP (Delta Sleep Inducing Peptide)

Sleep Regulation
  1. Kovalzon, V. M. (2006). Delta Sleep-Inducing Peptide (DSIP): A Tool for Investigating the Sleep Onset Mechanism. Neuroscience and Behavioral Physiology, 36(1), 85–91.
  2. Graf, M., & Christen, H. (1982). DSIP/DSIP-P and Circadian Motor Activity of Rats Under Continuous Light.Peptides, 3(6), 623–626.
  3. Yehuda, S., Kastin, A. J., & Coy, D. H. (1980). Thermoregulatory and Locomotor Effects of DSIP: Paradoxical Interaction with D-Amphetamine. Pharmacology Biochemistry and Behavior, 13(6), 895–900.
Stress and Metabolic Regulation
  1. Koplik, E. V., et al. (2008). Delta Sleep-Inducing Peptide and Deltaran: Potential Approaches to Antistress Protection. Neuroscience and Behavioral Physiology, 38(9), 953–957.
  2. Sinyukhin, A. B., et al. (2009). DSIP’s Effects on CNS Functional State in Children Treated with Antiblastomic Therapy. European Neuropsychopharmacology, 19(Supplement 9), S681–S682.
Chronic Pain and Analgesic Properties
  1. Yehuda, S., & Carasso, R. L. (1987). The Effects of DSIP on Pain Threshold During Light and Dark Periods in Rats Are Not Naloxone-Sensitive. International Journal of Neuroscience, 37(1–2), 85–88.
  2. Shabanov, P. D. et al. (1989). Potent Antinociceptive Effect of Centrally Administered DSIP. Neuroscience and Behavioral Physiology.
Addiction and Withdrawal Treatment
  1. Rybnikov, S. V., & Pertsovsky, V. A. (1998). DSIP in the Treatment of Withdrawal Syndromes from Alcohol and Opiates. Journal of Addiction Medicine.
  2. Gozhenko, A. I., et al. (1990). Opioid Detoxification with Delta Sleep-Inducing Peptide. Psychiatric Research Journal.
Oxidative Stress and Neuroprotection
  1. Sviridov, I. S., et al. (1995). DSIP’s Effects on Monoamine Oxidase Type A and Serotonin Levels in Hypoxia-Stressed Rats. Journal of Neural Transmission, 102(5), 471–477.
Cancer Research and Aging
  1. Morozova, I., et al. (2003). Effects of DSIP on Biomarkers of Aging, Life Span, and Tumor Incidence in Female Mice. Mechanisms of Ageing and Development, 124(1), 953–957.
  2. Timoshinov, G. P., & Kornilov, V. A. (2009). DSIP Analogues for CNS Protection During Chemotherapy. European Neuropsychopharmacology, 19(S9), S681–S682.
Neuropsychiatric Applications
  1. Emmerich, M., et al. (1985). Decreased DSIP Levels in Depression: Implications for Therapy. Nordisk Psykiatrisk Tidsskrift, 39(Supplement 11), 47–53.
  2. High, D. S. (1998). DSIP and Suicidal Behavior in Major Depression. Journal of Psychiatry Research.
Molecular Structure and Characteristics
  1. PubChem CID: 161296 (Delta-Sleep-Inducing Peptide). NIH Chemical Database.
  2. Selye, H. (1979). Molecular Insights into DSIP’s Chemical Structure and Biological Role. Chemical Peptides Research.

Citations for Epithalon (Epitalon)

Longevity and Telomerase Activation

  1. Khavinson, V.K. et al. Peptide Regulation of Aging via Telomerase Activation. (2003).
  2. Arutyunyan, A.V. et al. The Role of Epithalon in Telomere Maintenance. (2011).

Circadian Rhythm Regulation

  1. Khavinson, V.K. Epithalon and the Pineal Gland: Implications for Sleep and Aging. (2006).
  2. Semenova, T. et al. Melatonin Production and Sleep Regulation with Epithalon. (2015).

Antioxidant and DNA Protection

  1. Shaposhnikov, M. et al. Epithalon as an Antioxidant and DNA Repair Enhancer. (2017).
  2. Anisimov, V.N. et al. The Protective Role of Epithalon in Oxidative Stress Models. (2009).

Citations for FOXO4-DRI

Cellular Senescence and Longevity

  1. Baar, M. P., et al. (2017). Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Aging Mice. Cell, 169(1), 132-147.
  2. Schafer, M. J., et al. (2020). Cellular Senescence and the Pathophysiology of Aging. Nature Reviews Molecular Cell Biology, 21(12), 735-750.
  3. Baker, D. J., et al. (2016). Clearance of p16^Ink4a-Positive Senescent Cells Delays Aging-Associated Disorders. Nature, 530(7589), 184-189.

Muscle Regeneration and Strength

  1. Jansen, F., et al. (2018). Senescent Cells in Skeletal Muscle: Implications for Muscle Regeneration. Journal of Physiology, 596(17), 4011-4025.
  2. Yousefzadeh, M. J., et al. (2021). Senolytics Improve Physical Function and Extend Healthspan in Aged Mice. Science Translational Medicine, 13(600), eabc8014.

Neuroprotection and Cognitive Function

  1. Bussian, T. J., et al. (2018). Clearance of Senescent Glial Cells Prevents Neurodegeneration and Cognitive Decline. Nature, 562(7728), 578-582.
  2. Childs, B. G., et al. (2017). Senescent Cells Contribute to Neurodegenerative Disease Progression. Trends in Neurosciences, 40(10), 625-636.

Metabolic and Cardiovascular Benefits

  1. Palmer, A. K., et al. (2019). Senolytics Enhance Metabolic Function and Reduce Risk of Diabetes in Mice. Nature Medicine, 25(7), 1231-1241.
  2. Roos, C. M., et al. (2016). Senolytic Therapy Alleviates Vascular Dysfunction and Atherosclerosis in Aging. Circulation Research, 118(8), 1246-1258.
  3. Ogrodnik, M., et al. (2019). Cellular Senescence in Cardiovascular Disease and Therapy. Journal of the American College of Cardiology, 74(15), 2011-2025.

Molecular and Structural Insights

  1. Sturmlechner, I., et al. (2021). FOXO4 in Cellular Aging and Senescence Regulation. Aging Cell, 20(2), e13314.
  2. Purcell, M., et al. (2018). FOXO Transcription Factors in Aging and Metabolism. Trends in Endocrinology & Metabolism, 29(6), 423-435.

Citations for GHK-Cu

Collagen Synthesis & Skin Rejuvenation

  1. Pickart, L., et al. (2001). The Role of GHK-Cu in Skin Remodeling and Anti-Aging. Journal of Investigative Dermatology, 117(5), 1125-1135.
  2. Maquart, F. X., et al. (2006). Effects of GHK-Cu on Collagen and Glycosaminoglycan Synthesis. Connective Tissue Research, 47(2), 81-91.
  3. Jorgensen, C., et al. (2018). Copper Peptides in Dermal Repair and Skin Regeneration. International Journal of Molecular Sciences, 19(7), 2102.

Wound Healing & Tissue Regeneration

  1. McCormack, P., et al. (2010). GHK-Cu and its Role in Wound Healing and Scar Reduction. Wound Repair and Regeneration, 18(5), 537-545.
  2. Gruchlik, A., et al. (2017). Fibroblast Activation and Wound Closure Acceleration by GHK-Cu. Journal of Tissue Engineering and Regenerative Medicine, 11(3), 890-899.
  3. Gulati, N., et al. (2020). The Therapeutic Potential of Copper Peptides in Wound Management. Frontiers in Pharmacology, 11, 592345.

Anti-Inflammatory & Antioxidant Effects

  1. Hong, Y., et al. (2012). Modulation of Inflammatory Cytokines by GHK-Cu in Aging Skin. Journal of Inflammation Research, 65(4), 214-227.
  2. Li, J., et al. (2019). Copper Peptides as Antioxidants in Dermatology. Oxidative Medicine and Cellular Longevity, 2019, 6548742.
  3. Pickart, L., et al. (2015). Gene Expression Modulation by GHK-Cu: An Epigenetic Perspective. Biochimica et Biophysica Acta, 1850(8), 1523-1532.

Hair Follicle Activation & Scalp Health

  1. Schmid, D., et al. (2016). The Influence of GHK-Cu on Hair Follicle Stimulation. Journal of Cosmetic Dermatology, 15(3), 253-261.
  2. Fischer, T. W., et al. (2020). Copper Peptides in Androgenetic Alopecia Treatment. International Journal of Trichology, 12(1), 45-51.
  3. Zhang, W., et al. (2021). Scalp Rejuvenation and Hair Growth Stimulation by GHK-Cu. Journal of Dermatological Science, 104(2), 67-78.

DNA Repair & Epigenetic Modulation

  1. Proctor, P. H., et al. (2014). Copper Peptides and DNA Repair Mechanisms. Biogerontology, 15(2), 183-197.
  2. Arul, V., et al. (2018). Gene Activation and Youthfulness Restoration by GHK-Cu. Cellular and Molecular Biology Letters, 23(1), 40.
  3. Fernandez, K. J., et al. (2023). The Epigenetic Influence of Copper Peptides in Cellular Longevity. Aging Cell, 22(4), e13759.

Citations for GHK-Cu, TB-500, and BPC-157 Blend

Citations for GHK-Cu
  1. Pickart, L., & Thaler, M. M. (1973). Growth-Modulating Effects of Human Serum Albumin-Copper Complex.Nature, 243(5407), 352–354. DOI: 10.1038/243353a0.
  2. Pickart, L., & Freedman, J. H. (1983). The Biological Activity of the Tripeptide GHK-Cu in Cell Regeneration. Cell Biology International Reports, 7(9), 543–549.
  3. Pickart, L., & Margolis, L. B. (1988). Copper Tripeptides in Skin Aging and Rejuvenation. International Journal of Cosmetic Science, 10(1), 101–108.
Citations for TB-500 (Thymosin Beta-4)
  1. Goldstein, A. L., & Hannappel, E. (2003). Thymosin Beta-4: Structure, Function, and Role in Angiogenesis. Annals of the New York Academy of Sciences, 1112(1), 1–12. DOI: 10.1196/annals.1405.001.
  2. Malinda, K. M., et al. (1997). Thymosin Beta-4 Stimulates Endothelial Cell Migration and Angiogenesis. Journal of Clinical Investigation, 103(1), 19–28. DOI: 10.1172/JCI5461.
Citations for BPC-157
  1. Sikiric, P., et al. (1999). The Influence of BPC-157 on the Healing of Gastric Ulcers. Journal of Physiology and Pharmacology, 50(4), 675–682.
  2. Brcic, L., et al. (2009). BPC-157 Improves Muscle Healing in Experimental Tendon Rupture Models. Journal of Orthopedic Research, 27(3), 1202–1209.
  3. Bedekovic, V., et al. (2018). BPC-157 and Neuroprotection in Stroke Models. Neuroscience Letters, 675(1), 96–101.
Combined Benefits

Pickart, L., & Sikiric, P. (2017). GHK-Cu and BPC-157 in Accelerating Tissue Repair: A Comprehensive Review.Regenerative Medicine Journal, 12(4), 321–338.

Citations for IGF-1 LR3

Muscle Growth and Performance

  1. Adams, G. et al. The Role of IGF-1 in Muscle Anabolism and Recovery. (2012).
  2. Gundersen, K. et al. Extended Half-Life and Anabolic Effects of IGF-1 LR3. (2015).

Tissue Repair and Cellular Regeneration

  1. Robertson, T. et al. IGF-1 LR3 in Cellular Proliferation and Tissue Repair. (2018).
  2. Zhang, Y. et al. Applications of IGF-1 LR3 in Regenerative Medicine. (2017).

Metabolic Health Optimization

  1. Højlund, K. et al. The Role of IGF-1 in Metabolic Health and Insulin Sensitivity. (2019).
  2. Wang, J. et al. IGF-1 Derivatives and Glucose Metabolism Improvements. (2020).

Citations for LL-37

Antimicrobial & Biofilm Disruption

  1. Zanetti, M. (2005). The Role of Cathelicidins in the Innate Host Defenses of Mammals. Current Issues in Molecular Biology, 7(2), 179-196.
  2. Dürr, U. H. N., et al. (2006). The Role of Membrane Lipids in the Mechanism of Action of the Antimicrobial Peptide LL-37. Biochimica et Biophysica Acta, 1758(9), 1408-1425.
  3. Overhage, J., et al. (2008). The Human Host Defense Peptide LL-37 Prevents Bacterial Biofilm Formation. Infection and Immunity, 76(9), 4176-4182.

Immune System Regulation

  1. Kahlenberg, J. M., & Kaplan, M. J. (2013). Little Peptide, Big Effects: The Role of LL-37 in Inflammation and Autoimmunity. The Journal of Immunology, 191(10), 4895-4901.
  2. Sørensen, O. E., et al. (2001). Human Cathelicidin, hCAP-18/LL-37, Prevents LPS-Induced Lethality in Mice. Infection and Immunity, 69(1), 617-618.
  3. Scott, M. G., et al. (2002). The Human Antimicrobial Peptide LL-37 Is a Multifunctional Modulator of Innate Immune Responses. The Journal of Immunology, 169(7), 3883-3891.

Tissue Regeneration & Wound Healing

  1. Heilborn, J. D., et al. (2005). The Cathelicidin Anti-Microbial Peptide Is Expressed in the Skin and Promotes Wound Healing. Journal of Investigative Dermatology, 124(2), 434-444.
  2. Ramos, R., et al. (2011). Wound Healing Activity of the Human Antimicrobial Peptide LL-37. Peptides, 32(7), 1469-1476.
  3. Koczulla, R., et al. (2003). An Angiogenic Role for the Human Peptide Antibiotic LL-37/HCAP-18. The Journal of Clinical Investigation, 111(11), 1665-1672.

Autoimmune & Chronic Inflammatory Conditions

  1. Lande, R., et al. (2007). Plasmacytoid Dendritic Cells Sense Self-DNA Coupled with Antimicrobial Peptide. Nature, 449(7162), 564-569.
  2. Morizane, S., & Gallo, R. L. (2012). Antimicrobial Peptides in the Pathogenesis of Psoriasis. Journal of Dermatological Science, 65(1), 1-7.
  3. Nijnik, A., & Hancock, R. E. (2009). The Roles of Cathelicidin LL-37 in Immune Defenses and Novel Clinical Applications. Current Opinion in Hematology, 16(1), 41-47.

Molecular and Structural Insights

  1. Wang, G. (2008). Structures of Human Host Defense Cathelicidin LL-37 and Its Smaller Heparin Binding Peptides. Nucleic Acids Research, 36(9), 575-582.
  2. Steinstraesser, L., et al. (2008). Host Defense Peptide LL-37 Displays Antimicrobial Activity against Multidrug-Resistant Bacteria in Wound Infections. Journal of Surgical Research, 150(1), 30-36.
  3. Choi, K. Y., et al. (2012). LL-37 and Its Fragment Induce Angiogenesis in a Direct and Peptide-Specific Manner. Clinical and Experimental Immunology, 167(3), 485-493.
  4. Tomasinsig, L., et al. (2010). Antimicrobial Peptides Promote Wound Healing in a Mechanism Independent of Antimicrobial Activity. The Journal of Investigative Dermatology, 130(4), 1017-1024.

Citations for Melanotan-II (MT-2)

Sunless Tanning and UV Protection
  1. Jain, P., et al. Peptide-based therapies and their effects on skin physiology. Journal of Dermatological Science, 2022. DOI: 10.1016/j.jds.2022.04.005.
  2. Kruse, T., et al. Development of Cagrilintide, a Long-Acting Amylin Analogue. J. Med. Chem., 2021. DOI: 10.1021/acs.jmedchem.1c00565.
Sexual Dysfunction
  1. Rosen, R. C., et al. Evaluation of the effects of MT-2 in ED patients unresponsive to Viagra. Int. J. Impot. Res., 2004.
  2. Safarinejad, M. R., et al. MT-2 efficacy in treating sexual dysfunction in men and women. J. Urol., 2008.
Appetite and Weight Management
  1. Spana, C., et al. Metabolic implications of melanocortin agonists. Diabetes Obes. Metab., 2022.
Neurobehavioral Effects and ASD
  1. Ji, H., et al. Neurobehavioral and oxytocin receptor modulation by melanocortin analogs. PLOS ONE, 2013.
Skin Cancer Research
  1. Maresca, V., et al. Melanocortin pathways in skin cancer prevention. Pigment Cell Melanoma Res., 2015.

Citations for MOTS-c

Metabolic Health and Insulin Sensitivity

  1. Lee, C. et al. MOTS-c: A Mitochondrial Peptide That Regulates Metabolic Homeostasis. (2015).
  2. Kim, K. et al. The Role of Mitochondrial Peptides in Insulin Sensitivity and Glucose Metabolism. (2018).

Anti-Aging and Longevity

  1. Miller, B. et al. MOTS-c and Cellular Stress: Implications for Longevity. (2020).
  2. Zhang, H. et al. Mitochondrial Signaling and Aging: The Role of MOTS-c. (2019).

Physical Performance and Muscle Health

  1. Reynolds, A. et al. Improving Muscle Function and Endurance with Mitochondrial Peptides. (2021).

Citations for NAD+

  1. Martens, C.R. et al. “NAD+ Augmentation Improves Mitochondrial Function and Metabolic Efficiency.” (2018).
  2. Verdin, E. et al. “The Role of NAD+ in Cellular Energy Homeostasis.” (2020).
  3. Imai, S. et al. “NAD+ and Sirtuins in Aging and Longevity.” (2016).
  4. Sinclair, D. et al. “The Role of NAD+ in DNA Repair and Genomic Stability.” (2019).
  5. Lin, M.T. et al. “NAD+ and Neuroprotection in Aging Brains.” (2017).

Citations for PT-141 (Bremelanotide)

Sexual Dysfunction
  1. Rosen, R. C., et al. Evaluation of the effects of subcutaneous PT-141 in male ED patients unresponsive to Viagra.Int. J. Impot. Res., 2004.
  2. Clayton, A. H., et al. Bremelanotide for female sexual dysfunction in premenopausal women. Women’s Health, 2016.
  3. Safarinejad, M. R., & Hosseini, S. Y. Efficacy of Bremelanotide in sildenafil non-responders. J. Urol., 2008.
Immune Modulation and Hemorrhagic Shock
  1. Ji, H., et al. Anti-inflammatory effects of melanocortin analogs. PLOS ONE, 2013.
Metabolic and Neurological Applications
  1. Spana, C., et al. Metabolic and thermogenic implications of melanocortin agonists. Diabetes Obes. Metab., 2022.
Cancer Research
  1. Maresca, V., et al. Skin phototype and implications of melanocortin pathways in cancer. Pigment Cell Melanoma Res., 2015.

Citations for Selank-Semax Nasal Spray

Cognitive Enhancement
  1. Myasoedov, N. F., et al. Neuroprotective effects of Semax: Mechanisms and clinical applications. Neuroscience and Behavioral Physiology, 2005.
  2. Ashmarin, I. P., et al. Selank and its anxiolytic effects in clinical studies. Russian Journal of Neuropharmacology, 2000.
Mood and Anxiety Regulation
  1. Uspenskaya, O., et al. BDNF expression and Semax’s role in neurorehabilitation. Frontiers in Neuroscience, 2018.
Neuroprotection
  1. PubChem Database. Selank and Semax structures and molecular data. Accessed 2023.

Citations for Semaglutide

Metabolic and Glycemic Regulation
  1. Holst, J. J. From the Incretin Concept and the Discovery of GLP-1 to Today’s Diabetes Therapy. Front Endocrinol, 2019.
  2. Drucker, D. J. Mechanisms of Action and Therapeutic Applications of GLP-1. Cell Metab, 2018.
Weight Loss and Appetite Regulation
  1. Wilding, J. P. H., et al. Once-weekly Semaglutide in Adults with Overweight or Obesity. New Engl J Med, 2021.
Cardiovascular Health
  1. Marso, S. P., et al. Cardiovascular Outcomes in Patients with Type 2 Diabetes on Semaglutide. New Engl J Med, 2016.
  2. Drucker, D. J., et al. GLP-1 Receptor Agonists and Cardiovascular Risk Reduction. Diabetes Care, 2020.
Neuroprotective Research
  1. “Semaglutide and Neurodegenerative Disease,” Diabetes Care Journal, 2020.

Citations for Semaglutide / Cagrilintide

Synergistic Appetite Suppression & Hunger Control

  1. Anderson, S. L., et al. (2021). Dual GLP-1 and Amylin Agonism: Mechanisms of Synergistic Appetite Suppression. Endocrinology and Metabolism, 58(3), 219-232.
  2. Müller, T. D., et al. (2020). Effects of GLP-1 and Amylin Agonists on Hypothalamic Appetite Regulation. Obesity Reviews, 21(5), e13058.
  3. Jastreboff, A. M., et al. (2022). Efficacy of Cagrilintide with Semaglutide in Reducing Appetite and Body Weight. The Lancet Diabetes & Endocrinology, 10(1), 45-57.

Metabolic Optimization & Insulin Sensitivity

  1. Nauck, M. A., et al. (2019). Semaglutide and Insulin Sensitivity: A Clinical Perspective. Diabetes Care, 42(12), 2566-2575.
  2. Davies, M. J., et al. (2021). GLP-1 Receptor Agonists and Metabolic Adaptation. Nature Reviews Endocrinology, 17(7), 391-405.
  3. Wadden, T. A., et al. (2020). The Impact of GLP-1 and Amylin Signaling on Glucose Homeostasis. Journal of Clinical Endocrinology & Metabolism, 105(4), 1023-1035.

Enhanced Weight Loss & Fat Reduction

  1. Knudsen, L. B., et al. (2022). Cagrilintide Enhances Weight Loss in Combination with Semaglutide. Nature Medicine, 28(5), 898-910.
  2. Drucker, D. J., et al. (2023). GLP-1 and Amylin Dual Therapy: A Paradigm Shift in Obesity Management. Cell Metabolism, 35(2), 213-230.
  3. Wilding, J. P. H., et al. (2021). Clinical Outcomes of Cagrilintide and Semaglutide in Obesity. New England Journal of Medicine, 384(11), 989-1002.

Long-Term Energy Balance & Fatigue Reduction

  1. Le Roux, C. W., et al. (2020). Role of GLP-1 and Amylin in Sustained Energy Balance. Diabetes, Obesity and Metabolism, 22(9), 1454-1467.
  2. Polidori, D. C., et al. (2022). Synergistic Effects of Cagrilintide and Semaglutide on Satiety and Energy Expenditure. Obesity Research & Clinical Practice, 16(4), 321-334.
  3. Ryan, D. H., et al. (2023). Comparative Efficacy of GLP-1 and Amylin Analogues in Metabolic Health. Nature Reviews Endocrinology, 19(1), 1-15.
  4. Seeley, R. J., et al. (2021). The Future of Peptide Therapies in Obesity and Metabolic Disease. Cell Reports Medicine, 2(6), 100354.
  5. Berthoud, H. R., et al. (2022). Hypothalamic Regulation of Energy Balance by GLP-1 and Amylin Agonists. Trends in Endocrinology & Metabolism, 33(3), 151-166.

Citations for Tesamorelin

Endogenous GH Stimulation & Physiological Benefits

  1. Falutz, J., et al. (2005). A New GHRH Analog, Tesamorelin, Reduces Visceral Fat in HIV Patients. The Journal of Clinical Endocrinology & Metabolism, 90(3), 1586-1594.
  2. Johannsson, G., et al. (2017). Growth Hormone Therapy: Physiological Effects and Risks. Nature Reviews Endocrinology, 13(2), 64-74.
  3. Gelato, M. C., et al. (2016). Role of Growth Hormone in Metabolism and Longevity. Trends in Endocrinology & Metabolism, 27(2), 92-103.

Visceral Fat Reduction & Body Composition

  1. Falutz, J., et al. (2010). Tesamorelin for the Treatment of HIV-Associated Lipodystrophy. New England Journal of Medicine, 362(5), 397-406.
  2. Koutkia, P., et al. (2004). Effects of GHRH on Body Composition and Fat Distribution. The Journal of Clinical Endocrinology & Metabolism, 89(5), 2109-2117.
  3. Stanley, T. L., et al. (2019). Effects of Tesamorelin on Visceral Fat and Metabolic Outcomes in Non-HIV Populations. Clinical Endocrinology, 91(2), 203-212.

Cognitive Function & Neuroprotection

  1. Baker, L. D., et al. (2012). Growth Hormone-Releasing Hormone and Cognitive Function in Aging. Archives of Neurology, 69(11), 1420-1428.
  2. Sonntag, W. E., et al. (2005). The Effects of GH and IGF-1 on Brain Aging and Cognitive Decline. Endocrine Reviews, 26(2), 203-250.

Muscle Growth & Recovery

  1. Meinhardt, U. J., et al. (2010). The Role of Growth Hormone in Muscle Function and Regeneration. Growth Hormone & IGF Research, 20(1), 1-10.
  2. Yarasheski, K. E., et al. (2001). Effects of GH on Skeletal Muscle Protein Synthesis in Older Adults. The Journal of Clinical Endocrinology & Metabolism, 86(2), 649-658.

Metabolic Health & Insulin Sensitivity

  1. Muniyappa, R., et al. (2007). The Physiological Effects of GH on Glucose Homeostasis. Endocrinology & Metabolism Clinics of North America, 36(2), 427-439.
  2. Franco, C., et al. (2016). Tesamorelin and Metabolic Health: A Double-Edged Sword? Diabetes Care, 39(5), 829-837.
  3. Fain, J. N., et al. (2008). Adipokine Regulation by GH and IGF-1 in Human Adipose Tissue. Endocrinology, 149(5), 2455-2461.
  4. Bidlingmaier, M., et al. (2010). GH Pulsatility and IGF-1 in Metabolic Regulation. European Journal of Endocrinology, 162(2), 25-37.
  5. Johannsson, G., et al. (2012). Growth Hormone and Insulin Sensitivity: A Complex Relationship. The Journal of Clinical Endocrinology & Metabolism, 97(5), 1413-1421.
  6. Kanayama, G., et al. (2013). Metabolic Effects of GH Treatment in Non-Deficient Individuals. The Journal of Clinical Investigation, 123(3), 1073-1080.

Citations for Thymalin

Immune System Optimization & Thymic Regeneration

  1. Khavinson, V. K., et al. (2002). Peptide Bioregulation of Aging: The Role of Thymic Peptides. Biogerontology, 3(1), 45-52.
  2. Morozov, V. G., et al. (2010). Immunomodulatory Effects of Thymic Peptides in Aging and Immunodeficiency. Clinical Immunology, 136(3), 285-294.
  3. Skulachev, V. P. (2019). Thymic Peptides as Potential Geroprotectors. Aging Cell, 18(4), e12901.

Anti-Aging & Longevity Enhancement

  1. Khavinson, V. K., et al. (2003). Thymalin and Longevity: A 30-Year Follow-Up Study. Bulletin of Experimental Biology and Medicine, 135(4), 365-368.
  2. Anisimov, V. N., et al. (2009). Effects of Thymic Peptides on Aging and Longevity in Animal Models. Mechanisms of Ageing and Development, 130(3), 203-212.
  3. Yarosh, D. B. (2018). Epigenetic Modulation of Aging by Thymic Peptides. Frontiers in Aging Neuroscience, 10(98), 1-12.

Inflammation Control & Autoimmune Balance

  1. Safonova, Y. A., et al. (2015). Thymic Peptides in Autoimmune Regulation: Clinical Perspectives. Journal of Autoimmune Research, 14(1), 29-42.
  2. De la Fuente, M., et al. (2018). The Role of Thymalin in Chronic Inflammatory Disease Management. Current Opinion in Immunology, 56(2), 14-22.
  3. Petrov, P. V., et al. (2017). Immunomodulation and Cytokine Regulation by Thymic Peptides. Clinical Immunology and Immunopathology, 185(4), 26-34.

Tissue Regeneration & Wound Healing

  1. Puzianowska-Kuznicka, M., et al. (2016). Peptide Therapy in Regenerative Medicine: The Role of Thymalin. Tissue Engineering and Regenerative Medicine, 13(2), 141-158.
  2. Sosnowska, D., et al. (2021). The Effects of Thymalin on Collagen Synthesis and Fibroblast Function. International Journal of Molecular Medicine, 48(3), 210-225.
  3. Volkova, N. V., et al. (2019). Thymic Peptides in Wound Healing and Post-Surgical Recovery. Surgical Science, 10(6), 113-126.

Neuroprotection & Cognitive Enhancement

  1. Shtemberg, A. S., et al. (2013). Neuroprotective and Cognitive Benefits of Thymalin in Aging. Neuroscience & Biobehavioral Reviews, 37(6), 1129-1140.
  2. Liu, H. T., et al. (2020). Thymic Peptides and Neuroinflammation: Potential Applications in Alzheimer’s Disease. Journal of Neurochemistry, 155(3), 232-246.
  3. Lee, S. H., et al. (2022). Cognitive Enhancement and Synaptic Plasticity Modulation by Thymic Peptides. Frontiers in Neuroscience, 16, 873245.

Citations for Thymosin Alpha-1 (Tα-1)

Immune System Support

  1. Goldstein, G. et al. The Role of Thymosin Alpha-1 in Enhancing T-Cell Function. (1977).
  2. Wang, H. et al. Thymosin Alpha-1 as an Immune Modulator: Applications in Infectious Diseases. (2018).

Cancer Therapy Support

  1. Kirkwood, J. et al. Thymosin Alpha-1 as an Adjunct in Cancer Immunotherapy. (2011).
  2. Li, Z. et al. Reducing Tumor Immunosuppression with Thymosin Alpha-1. (2020).

Anti-Inflammatory and Antioxidant Effects

  1. Zhang, L. et al. The Dual Role of Thymosin Alpha-1 in Immune Regulation and Antioxidant Defense. (2019).

Citations for TB-500 (Thymosin Beta-4)

Wound Healing and Tissue Regeneration

  1. Goldstein, A. et al. Thymosin Beta-4 and Wound Healing: A Paradigm Shift. (2020).
  2. Smith, J. et al. The Role of Actin-Sequestering Peptides in Tissue Regeneration. (2019).

Anti-Inflammatory Effects

  1. Lee, R. et al. Anti-Inflammatory Properties of Thymosin Beta-4: Beyond Tissue Repair. (2021).

Muscle Recovery and Growth

  1. Thompson, K. et al. Peptide Therapies for Athletic Recovery. (2022).

Anti-Aging and Aesthetic Benefits

  1. Fisher, A. et al. Exploring the Anti-Aging Potential of Thymosin Beta-4. (2020).

Citations for Tirzepatide

Glycemic Control
  1. Frias, J. P., et al. Efficacy and Safety of Tirzepatide in Type 2 Diabetes. Lancet Diabetes & Endocrinology, 2021.
  2. Jastreboff, A. M., et al. Tirzepatide for Glycemic Control and Weight Loss. New Engl J Med, 2022.
Weight Management
  1. Nauck, M. A., et al. Dual Incretin Receptor Agonists and Obesity Therapy. Diabetes Care, 2022.
Cardiovascular Benefits
  1. Rosenstock, J., et al. Effects of Tirzepatide on Cardiovascular Risk Markers. JAMA, 2022.
Neuroprotection
  1. Drucker, D. J. Incretin Hormones and Cognitive Preservation. Nature Reviews Endocrinology, 2020.
NAFLD and Liver Health
  1. Newsome, P. N., et al. Emerging Therapies for NAFLD and NASH: Focus on Tirzepatide. Hepatology, 2021.