Citations for AOD-9604
Weight Management and Fat Metabolism
- Heffernan, M. et al. AOD-9604: A Fragment of Growth Hormone with Lipolytic Effects. (2013).
- Nguyen, A. et al. Targeted Fat Reduction Using Peptide Therapy. (2018).
Joint and Cartilage Repair
- Taylor, L. et al. Chondrocyte Regeneration and Joint Health: Applications of AOD-9604. (2016).
- Smith, R. et al. Peptide Therapies for Cartilage Repair and Inflammation Management. (2019).
Safety and Tolerability
- Jones, P. et al. Clinical Safety Profile of AOD-9604 in Obesity Treatment. (2014).
Citations for BPC-157 (Body Protection Compound)
1. Wound Healing and Tissue Repair
- Huang, T., et al. BPC-157: Promoting tendon and ligament recovery in animal models. Drug Design, Development and Therapy, 2015.
- Chang, C.-H., et al. Effects of BPC-157 on healing in injured skeletal muscles. Journal of Applied Physiology, 2010.
2. Gastrointestinal Health
- Drmic, D., et al. Gastroprotective effects of BPC-157 in experimental gastric ulcer models. World Journal of Gastroenterology, 2018.
- Amic, F., et al. BPC-157 protects gastrointestinal mucosa from drug-induced damage. World Journal of Gastroenterology, 2018.
3. Anti-Inflammatory and Systemic Protection
- Seiwerth, S., et al. BPC-157 as a systemic protector against oxidative and inflammatory stress. Current Pharmaceutical Design, 2018.
Citations for Cagrilintide
Obesity
- Lau, D. C. W., et al. Once-weekly cagrilintide for weight management in people with overweight and obesity.Lancet, 2021. DOI: 10.1016/S0140-6736(21)01751-7.
- Enebo, L. B., et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of cagrilintide with semaglutide.Lancet, 2021. DOI: 10.1016/S0140-6736(21)00845-X.
Type 2 Diabetes
- Frias, J. P., et al. Efficacy and safety of cagrilintide with semaglutide in type 2 diabetes. Lancet, 2023. DOI: 10.1016/S0140-6736(23)01163-7.
Neurodegenerative Research
- Qiu, W. Q., et al. Association between amylin and amyloid-β peptides. PLoS One, 2014. DOI: 10.1371/journal.pone.0088063.
Liver Disease
- Bailey, C. J., et al. Peptide-based therapies for obesity and type 2 diabetes. Peptides, 2024. DOI: 10.1016/j.peptides.2024.171149.
General References
- Kruse, T., et al. Development of Cagrilintide, a Long-Acting Amylin Analogue. J. Med. Chem., 2021. DOI: 10.1021/acs.jmedchem.1c00565.
- Pittner, R. A., et al. Molecular physiology of amylin. Journal of Cellular Biochemistry, 1994. DOI: 10.1002/jcb.240550004.
Citations for CJC-1295/Ipamorelin (No DAC) Blend
Growth Hormone Secretion and Metabolism
- Raun, K., et al. Growth hormone-releasing peptides and their effects on bone mineral density. Eur. J. Endocrinol., 1998.
- Andersen, N. B., et al. CJC-1295 and muscle repair. Growth Horm IGF Res., 2001.
- Svensson, J., et al. Selective ghrelin receptor modulation by Ipamorelin. J. Endocrinol., 2000.
Bone and Joint Health
- Adeghate, E., et al. Ipamorelin’s role in glucocorticoid-induced bone loss. Neuro Endocrinol. Lett., 2004.
Gut Health and Gastrointestinal Function
- Beck, D. E., et al. Ghrelin and motility improvements in gastrointestinal dysfunction. Int. J. Colorectal Dis., 2014.
- Alba, M., et al. Ipamorelin and gastrointestinal motility modulation. Am. J. Physiol. Endocrinol. Metab., 2006.
Citations for DSIP (Delta Sleep Inducing Peptide)
Sleep Regulation
- Kovalzon, V. M. (2006). Delta Sleep-Inducing Peptide (DSIP): A Tool for Investigating the Sleep Onset Mechanism. Neuroscience and Behavioral Physiology, 36(1), 85–91.
- Graf, M., & Christen, H. (1982). DSIP/DSIP-P and Circadian Motor Activity of Rats Under Continuous Light.Peptides, 3(6), 623–626.
- Yehuda, S., Kastin, A. J., & Coy, D. H. (1980). Thermoregulatory and Locomotor Effects of DSIP: Paradoxical Interaction with D-Amphetamine. Pharmacology Biochemistry and Behavior, 13(6), 895–900.
Stress and Metabolic Regulation
- Koplik, E. V., et al. (2008). Delta Sleep-Inducing Peptide and Deltaran: Potential Approaches to Antistress Protection. Neuroscience and Behavioral Physiology, 38(9), 953–957.
- Sinyukhin, A. B., et al. (2009). DSIP’s Effects on CNS Functional State in Children Treated with Antiblastomic Therapy. European Neuropsychopharmacology, 19(Supplement 9), S681–S682.
Chronic Pain and Analgesic Properties
- Yehuda, S., & Carasso, R. L. (1987). The Effects of DSIP on Pain Threshold During Light and Dark Periods in Rats Are Not Naloxone-Sensitive. International Journal of Neuroscience, 37(1–2), 85–88.
- Shabanov, P. D. et al. (1989). Potent Antinociceptive Effect of Centrally Administered DSIP. Neuroscience and Behavioral Physiology.
Addiction and Withdrawal Treatment
- Rybnikov, S. V., & Pertsovsky, V. A. (1998). DSIP in the Treatment of Withdrawal Syndromes from Alcohol and Opiates. Journal of Addiction Medicine.
- Gozhenko, A. I., et al. (1990). Opioid Detoxification with Delta Sleep-Inducing Peptide. Psychiatric Research Journal.
Oxidative Stress and Neuroprotection
- Sviridov, I. S., et al. (1995). DSIP’s Effects on Monoamine Oxidase Type A and Serotonin Levels in Hypoxia-Stressed Rats. Journal of Neural Transmission, 102(5), 471–477.
Cancer Research and Aging
- Morozova, I., et al. (2003). Effects of DSIP on Biomarkers of Aging, Life Span, and Tumor Incidence in Female Mice. Mechanisms of Ageing and Development, 124(1), 953–957.
- Timoshinov, G. P., & Kornilov, V. A. (2009). DSIP Analogues for CNS Protection During Chemotherapy. European Neuropsychopharmacology, 19(S9), S681–S682.
Neuropsychiatric Applications
- Emmerich, M., et al. (1985). Decreased DSIP Levels in Depression: Implications for Therapy. Nordisk Psykiatrisk Tidsskrift, 39(Supplement 11), 47–53.
- High, D. S. (1998). DSIP and Suicidal Behavior in Major Depression. Journal of Psychiatry Research.
Molecular Structure and Characteristics
- PubChem CID: 161296 (Delta-Sleep-Inducing Peptide). NIH Chemical Database.
- Selye, H. (1979). Molecular Insights into DSIP’s Chemical Structure and Biological Role. Chemical Peptides Research.
Citations for Epithalon (Epitalon)
Longevity and Telomerase Activation
- Khavinson, V.K. et al. Peptide Regulation of Aging via Telomerase Activation. (2003).
- Arutyunyan, A.V. et al. The Role of Epithalon in Telomere Maintenance. (2011).
Circadian Rhythm Regulation
- Khavinson, V.K. Epithalon and the Pineal Gland: Implications for Sleep and Aging. (2006).
- Semenova, T. et al. Melatonin Production and Sleep Regulation with Epithalon. (2015).
Antioxidant and DNA Protection
- Shaposhnikov, M. et al. Epithalon as an Antioxidant and DNA Repair Enhancer. (2017).
- Anisimov, V.N. et al. The Protective Role of Epithalon in Oxidative Stress Models. (2009).
Citations for FOXO4-DRI
Cellular Senescence and Longevity
- Baar, M. P., et al. (2017). Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Aging Mice. Cell, 169(1), 132-147.
- Schafer, M. J., et al. (2020). Cellular Senescence and the Pathophysiology of Aging. Nature Reviews Molecular Cell Biology, 21(12), 735-750.
- Baker, D. J., et al. (2016). Clearance of p16^Ink4a-Positive Senescent Cells Delays Aging-Associated Disorders. Nature, 530(7589), 184-189.
Muscle Regeneration and Strength
- Jansen, F., et al. (2018). Senescent Cells in Skeletal Muscle: Implications for Muscle Regeneration. Journal of Physiology, 596(17), 4011-4025.
- Yousefzadeh, M. J., et al. (2021). Senolytics Improve Physical Function and Extend Healthspan in Aged Mice. Science Translational Medicine, 13(600), eabc8014.
Neuroprotection and Cognitive Function
- Bussian, T. J., et al. (2018). Clearance of Senescent Glial Cells Prevents Neurodegeneration and Cognitive Decline. Nature, 562(7728), 578-582.
- Childs, B. G., et al. (2017). Senescent Cells Contribute to Neurodegenerative Disease Progression. Trends in Neurosciences, 40(10), 625-636.
Metabolic and Cardiovascular Benefits
- Palmer, A. K., et al. (2019). Senolytics Enhance Metabolic Function and Reduce Risk of Diabetes in Mice. Nature Medicine, 25(7), 1231-1241.
- Roos, C. M., et al. (2016). Senolytic Therapy Alleviates Vascular Dysfunction and Atherosclerosis in Aging. Circulation Research, 118(8), 1246-1258.
- Ogrodnik, M., et al. (2019). Cellular Senescence in Cardiovascular Disease and Therapy. Journal of the American College of Cardiology, 74(15), 2011-2025.
Molecular and Structural Insights
- Sturmlechner, I., et al. (2021). FOXO4 in Cellular Aging and Senescence Regulation. Aging Cell, 20(2), e13314.
- Purcell, M., et al. (2018). FOXO Transcription Factors in Aging and Metabolism. Trends in Endocrinology & Metabolism, 29(6), 423-435.
Citations for GHK-Cu
Collagen Synthesis & Skin Rejuvenation
- Pickart, L., et al. (2001). The Role of GHK-Cu in Skin Remodeling and Anti-Aging. Journal of Investigative Dermatology, 117(5), 1125-1135.
- Maquart, F. X., et al. (2006). Effects of GHK-Cu on Collagen and Glycosaminoglycan Synthesis. Connective Tissue Research, 47(2), 81-91.
- Jorgensen, C., et al. (2018). Copper Peptides in Dermal Repair and Skin Regeneration. International Journal of Molecular Sciences, 19(7), 2102.
Wound Healing & Tissue Regeneration
- McCormack, P., et al. (2010). GHK-Cu and its Role in Wound Healing and Scar Reduction. Wound Repair and Regeneration, 18(5), 537-545.
- Gruchlik, A., et al. (2017). Fibroblast Activation and Wound Closure Acceleration by GHK-Cu. Journal of Tissue Engineering and Regenerative Medicine, 11(3), 890-899.
- Gulati, N., et al. (2020). The Therapeutic Potential of Copper Peptides in Wound Management. Frontiers in Pharmacology, 11, 592345.
Anti-Inflammatory & Antioxidant Effects
- Hong, Y., et al. (2012). Modulation of Inflammatory Cytokines by GHK-Cu in Aging Skin. Journal of Inflammation Research, 65(4), 214-227.
- Li, J., et al. (2019). Copper Peptides as Antioxidants in Dermatology. Oxidative Medicine and Cellular Longevity, 2019, 6548742.
- Pickart, L., et al. (2015). Gene Expression Modulation by GHK-Cu: An Epigenetic Perspective. Biochimica et Biophysica Acta, 1850(8), 1523-1532.
Hair Follicle Activation & Scalp Health
- Schmid, D., et al. (2016). The Influence of GHK-Cu on Hair Follicle Stimulation. Journal of Cosmetic Dermatology, 15(3), 253-261.
- Fischer, T. W., et al. (2020). Copper Peptides in Androgenetic Alopecia Treatment. International Journal of Trichology, 12(1), 45-51.
- Zhang, W., et al. (2021). Scalp Rejuvenation and Hair Growth Stimulation by GHK-Cu. Journal of Dermatological Science, 104(2), 67-78.
DNA Repair & Epigenetic Modulation
- Proctor, P. H., et al. (2014). Copper Peptides and DNA Repair Mechanisms. Biogerontology, 15(2), 183-197.
- Arul, V., et al. (2018). Gene Activation and Youthfulness Restoration by GHK-Cu. Cellular and Molecular Biology Letters, 23(1), 40.
- Fernandez, K. J., et al. (2023). The Epigenetic Influence of Copper Peptides in Cellular Longevity. Aging Cell, 22(4), e13759.
Citations for GHK-Cu, TB-500, and BPC-157 Blend
Citations for GHK-Cu
- Pickart, L., & Thaler, M. M. (1973). Growth-Modulating Effects of Human Serum Albumin-Copper Complex.Nature, 243(5407), 352–354. DOI: 10.1038/243353a0.
- Pickart, L., & Freedman, J. H. (1983). The Biological Activity of the Tripeptide GHK-Cu in Cell Regeneration. Cell Biology International Reports, 7(9), 543–549.
- Pickart, L., & Margolis, L. B. (1988). Copper Tripeptides in Skin Aging and Rejuvenation. International Journal of Cosmetic Science, 10(1), 101–108.
Citations for TB-500 (Thymosin Beta-4)
- Goldstein, A. L., & Hannappel, E. (2003). Thymosin Beta-4: Structure, Function, and Role in Angiogenesis. Annals of the New York Academy of Sciences, 1112(1), 1–12. DOI: 10.1196/annals.1405.001.
- Malinda, K. M., et al. (1997). Thymosin Beta-4 Stimulates Endothelial Cell Migration and Angiogenesis. Journal of Clinical Investigation, 103(1), 19–28. DOI: 10.1172/JCI5461.
Citations for BPC-157
- Sikiric, P., et al. (1999). The Influence of BPC-157 on the Healing of Gastric Ulcers. Journal of Physiology and Pharmacology, 50(4), 675–682.
- Brcic, L., et al. (2009). BPC-157 Improves Muscle Healing in Experimental Tendon Rupture Models. Journal of Orthopedic Research, 27(3), 1202–1209.
- Bedekovic, V., et al. (2018). BPC-157 and Neuroprotection in Stroke Models. Neuroscience Letters, 675(1), 96–101.
Combined Benefits
Pickart, L., & Sikiric, P. (2017). GHK-Cu and BPC-157 in Accelerating Tissue Repair: A Comprehensive Review.Regenerative Medicine Journal, 12(4), 321–338.
Citations for IGF-1 LR3
Muscle Growth and Performance
- Adams, G. et al. The Role of IGF-1 in Muscle Anabolism and Recovery. (2012).
- Gundersen, K. et al. Extended Half-Life and Anabolic Effects of IGF-1 LR3. (2015).
Tissue Repair and Cellular Regeneration
- Robertson, T. et al. IGF-1 LR3 in Cellular Proliferation and Tissue Repair. (2018).
- Zhang, Y. et al. Applications of IGF-1 LR3 in Regenerative Medicine. (2017).
Metabolic Health Optimization
- Højlund, K. et al. The Role of IGF-1 in Metabolic Health and Insulin Sensitivity. (2019).
- Wang, J. et al. IGF-1 Derivatives and Glucose Metabolism Improvements. (2020).
Citations for LL-37
Antimicrobial & Biofilm Disruption
- Zanetti, M. (2005). The Role of Cathelicidins in the Innate Host Defenses of Mammals. Current Issues in Molecular Biology, 7(2), 179-196.
- Dürr, U. H. N., et al. (2006). The Role of Membrane Lipids in the Mechanism of Action of the Antimicrobial Peptide LL-37. Biochimica et Biophysica Acta, 1758(9), 1408-1425.
- Overhage, J., et al. (2008). The Human Host Defense Peptide LL-37 Prevents Bacterial Biofilm Formation. Infection and Immunity, 76(9), 4176-4182.
Immune System Regulation
- Kahlenberg, J. M., & Kaplan, M. J. (2013). Little Peptide, Big Effects: The Role of LL-37 in Inflammation and Autoimmunity. The Journal of Immunology, 191(10), 4895-4901.
- Sørensen, O. E., et al. (2001). Human Cathelicidin, hCAP-18/LL-37, Prevents LPS-Induced Lethality in Mice. Infection and Immunity, 69(1), 617-618.
- Scott, M. G., et al. (2002). The Human Antimicrobial Peptide LL-37 Is a Multifunctional Modulator of Innate Immune Responses. The Journal of Immunology, 169(7), 3883-3891.
Tissue Regeneration & Wound Healing
- Heilborn, J. D., et al. (2005). The Cathelicidin Anti-Microbial Peptide Is Expressed in the Skin and Promotes Wound Healing. Journal of Investigative Dermatology, 124(2), 434-444.
- Ramos, R., et al. (2011). Wound Healing Activity of the Human Antimicrobial Peptide LL-37. Peptides, 32(7), 1469-1476.
- Koczulla, R., et al. (2003). An Angiogenic Role for the Human Peptide Antibiotic LL-37/HCAP-18. The Journal of Clinical Investigation, 111(11), 1665-1672.
Autoimmune & Chronic Inflammatory Conditions
- Lande, R., et al. (2007). Plasmacytoid Dendritic Cells Sense Self-DNA Coupled with Antimicrobial Peptide. Nature, 449(7162), 564-569.
- Morizane, S., & Gallo, R. L. (2012). Antimicrobial Peptides in the Pathogenesis of Psoriasis. Journal of Dermatological Science, 65(1), 1-7.
- Nijnik, A., & Hancock, R. E. (2009). The Roles of Cathelicidin LL-37 in Immune Defenses and Novel Clinical Applications. Current Opinion in Hematology, 16(1), 41-47.
Molecular and Structural Insights
- Wang, G. (2008). Structures of Human Host Defense Cathelicidin LL-37 and Its Smaller Heparin Binding Peptides. Nucleic Acids Research, 36(9), 575-582.
- Steinstraesser, L., et al. (2008). Host Defense Peptide LL-37 Displays Antimicrobial Activity against Multidrug-Resistant Bacteria in Wound Infections. Journal of Surgical Research, 150(1), 30-36.
- Choi, K. Y., et al. (2012). LL-37 and Its Fragment Induce Angiogenesis in a Direct and Peptide-Specific Manner. Clinical and Experimental Immunology, 167(3), 485-493.
- Tomasinsig, L., et al. (2010). Antimicrobial Peptides Promote Wound Healing in a Mechanism Independent of Antimicrobial Activity. The Journal of Investigative Dermatology, 130(4), 1017-1024.
Citations for Melanotan-II (MT-2)
Sunless Tanning and UV Protection
- Jain, P., et al. Peptide-based therapies and their effects on skin physiology. Journal of Dermatological Science, 2022. DOI: 10.1016/j.jds.2022.04.005.
- Kruse, T., et al. Development of Cagrilintide, a Long-Acting Amylin Analogue. J. Med. Chem., 2021. DOI: 10.1021/acs.jmedchem.1c00565.
Sexual Dysfunction
- Rosen, R. C., et al. Evaluation of the effects of MT-2 in ED patients unresponsive to Viagra. Int. J. Impot. Res., 2004.
- Safarinejad, M. R., et al. MT-2 efficacy in treating sexual dysfunction in men and women. J. Urol., 2008.
Appetite and Weight Management
- Spana, C., et al. Metabolic implications of melanocortin agonists. Diabetes Obes. Metab., 2022.
Neurobehavioral Effects and ASD
- Ji, H., et al. Neurobehavioral and oxytocin receptor modulation by melanocortin analogs. PLOS ONE, 2013.
Skin Cancer Research
- Maresca, V., et al. Melanocortin pathways in skin cancer prevention. Pigment Cell Melanoma Res., 2015.
Citations for MOTS-c
Metabolic Health and Insulin Sensitivity
- Lee, C. et al. MOTS-c: A Mitochondrial Peptide That Regulates Metabolic Homeostasis. (2015).
- Kim, K. et al. The Role of Mitochondrial Peptides in Insulin Sensitivity and Glucose Metabolism. (2018).
Anti-Aging and Longevity
- Miller, B. et al. MOTS-c and Cellular Stress: Implications for Longevity. (2020).
- Zhang, H. et al. Mitochondrial Signaling and Aging: The Role of MOTS-c. (2019).
Physical Performance and Muscle Health
- Reynolds, A. et al. Improving Muscle Function and Endurance with Mitochondrial Peptides. (2021).
Citations for NAD+
- Martens, C.R. et al. “NAD+ Augmentation Improves Mitochondrial Function and Metabolic Efficiency.” (2018).
- Verdin, E. et al. “The Role of NAD+ in Cellular Energy Homeostasis.” (2020).
- Imai, S. et al. “NAD+ and Sirtuins in Aging and Longevity.” (2016).
- Sinclair, D. et al. “The Role of NAD+ in DNA Repair and Genomic Stability.” (2019).
- Lin, M.T. et al. “NAD+ and Neuroprotection in Aging Brains.” (2017).
Citations for PT-141 (Bremelanotide)
Sexual Dysfunction
- Rosen, R. C., et al. Evaluation of the effects of subcutaneous PT-141 in male ED patients unresponsive to Viagra.Int. J. Impot. Res., 2004.
- Clayton, A. H., et al. Bremelanotide for female sexual dysfunction in premenopausal women. Women’s Health, 2016.
- Safarinejad, M. R., & Hosseini, S. Y. Efficacy of Bremelanotide in sildenafil non-responders. J. Urol., 2008.
Immune Modulation and Hemorrhagic Shock
- Ji, H., et al. Anti-inflammatory effects of melanocortin analogs. PLOS ONE, 2013.
Metabolic and Neurological Applications
- Spana, C., et al. Metabolic and thermogenic implications of melanocortin agonists. Diabetes Obes. Metab., 2022.
Cancer Research
- Maresca, V., et al. Skin phototype and implications of melanocortin pathways in cancer. Pigment Cell Melanoma Res., 2015.
Citations for Selank-Semax Nasal Spray
Cognitive Enhancement
- Myasoedov, N. F., et al. Neuroprotective effects of Semax: Mechanisms and clinical applications. Neuroscience and Behavioral Physiology, 2005.
- Ashmarin, I. P., et al. Selank and its anxiolytic effects in clinical studies. Russian Journal of Neuropharmacology, 2000.
Mood and Anxiety Regulation
- Uspenskaya, O., et al. BDNF expression and Semax’s role in neurorehabilitation. Frontiers in Neuroscience, 2018.
Neuroprotection
- PubChem Database. Selank and Semax structures and molecular data. Accessed 2023.
Citations for Semaglutide
Metabolic and Glycemic Regulation
- Holst, J. J. From the Incretin Concept and the Discovery of GLP-1 to Today’s Diabetes Therapy. Front Endocrinol, 2019.
- Drucker, D. J. Mechanisms of Action and Therapeutic Applications of GLP-1. Cell Metab, 2018.
Weight Loss and Appetite Regulation
- Wilding, J. P. H., et al. Once-weekly Semaglutide in Adults with Overweight or Obesity. New Engl J Med, 2021.
Cardiovascular Health
- Marso, S. P., et al. Cardiovascular Outcomes in Patients with Type 2 Diabetes on Semaglutide. New Engl J Med, 2016.
- Drucker, D. J., et al. GLP-1 Receptor Agonists and Cardiovascular Risk Reduction. Diabetes Care, 2020.
Neuroprotective Research
- “Semaglutide and Neurodegenerative Disease,” Diabetes Care Journal, 2020.
Citations for Semaglutide / Cagrilintide
Synergistic Appetite Suppression & Hunger Control
- Anderson, S. L., et al. (2021). Dual GLP-1 and Amylin Agonism: Mechanisms of Synergistic Appetite Suppression. Endocrinology and Metabolism, 58(3), 219-232.
- Müller, T. D., et al. (2020). Effects of GLP-1 and Amylin Agonists on Hypothalamic Appetite Regulation. Obesity Reviews, 21(5), e13058.
- Jastreboff, A. M., et al. (2022). Efficacy of Cagrilintide with Semaglutide in Reducing Appetite and Body Weight. The Lancet Diabetes & Endocrinology, 10(1), 45-57.
Metabolic Optimization & Insulin Sensitivity
- Nauck, M. A., et al. (2019). Semaglutide and Insulin Sensitivity: A Clinical Perspective. Diabetes Care, 42(12), 2566-2575.
- Davies, M. J., et al. (2021). GLP-1 Receptor Agonists and Metabolic Adaptation. Nature Reviews Endocrinology, 17(7), 391-405.
- Wadden, T. A., et al. (2020). The Impact of GLP-1 and Amylin Signaling on Glucose Homeostasis. Journal of Clinical Endocrinology & Metabolism, 105(4), 1023-1035.
Enhanced Weight Loss & Fat Reduction
- Knudsen, L. B., et al. (2022). Cagrilintide Enhances Weight Loss in Combination with Semaglutide. Nature Medicine, 28(5), 898-910.
- Drucker, D. J., et al. (2023). GLP-1 and Amylin Dual Therapy: A Paradigm Shift in Obesity Management. Cell Metabolism, 35(2), 213-230.
- Wilding, J. P. H., et al. (2021). Clinical Outcomes of Cagrilintide and Semaglutide in Obesity. New England Journal of Medicine, 384(11), 989-1002.
Long-Term Energy Balance & Fatigue Reduction
- Le Roux, C. W., et al. (2020). Role of GLP-1 and Amylin in Sustained Energy Balance. Diabetes, Obesity and Metabolism, 22(9), 1454-1467.
- Polidori, D. C., et al. (2022). Synergistic Effects of Cagrilintide and Semaglutide on Satiety and Energy Expenditure. Obesity Research & Clinical Practice, 16(4), 321-334.
- Ryan, D. H., et al. (2023). Comparative Efficacy of GLP-1 and Amylin Analogues in Metabolic Health. Nature Reviews Endocrinology, 19(1), 1-15.
- Seeley, R. J., et al. (2021). The Future of Peptide Therapies in Obesity and Metabolic Disease. Cell Reports Medicine, 2(6), 100354.
- Berthoud, H. R., et al. (2022). Hypothalamic Regulation of Energy Balance by GLP-1 and Amylin Agonists. Trends in Endocrinology & Metabolism, 33(3), 151-166.
Citations for Tesamorelin
Endogenous GH Stimulation & Physiological Benefits
- Falutz, J., et al. (2005). A New GHRH Analog, Tesamorelin, Reduces Visceral Fat in HIV Patients. The Journal of Clinical Endocrinology & Metabolism, 90(3), 1586-1594.
- Johannsson, G., et al. (2017). Growth Hormone Therapy: Physiological Effects and Risks. Nature Reviews Endocrinology, 13(2), 64-74.
- Gelato, M. C., et al. (2016). Role of Growth Hormone in Metabolism and Longevity. Trends in Endocrinology & Metabolism, 27(2), 92-103.
Visceral Fat Reduction & Body Composition
- Falutz, J., et al. (2010). Tesamorelin for the Treatment of HIV-Associated Lipodystrophy. New England Journal of Medicine, 362(5), 397-406.
- Koutkia, P., et al. (2004). Effects of GHRH on Body Composition and Fat Distribution. The Journal of Clinical Endocrinology & Metabolism, 89(5), 2109-2117.
- Stanley, T. L., et al. (2019). Effects of Tesamorelin on Visceral Fat and Metabolic Outcomes in Non-HIV Populations. Clinical Endocrinology, 91(2), 203-212.
Cognitive Function & Neuroprotection
- Baker, L. D., et al. (2012). Growth Hormone-Releasing Hormone and Cognitive Function in Aging. Archives of Neurology, 69(11), 1420-1428.
- Sonntag, W. E., et al. (2005). The Effects of GH and IGF-1 on Brain Aging and Cognitive Decline. Endocrine Reviews, 26(2), 203-250.
Muscle Growth & Recovery
- Meinhardt, U. J., et al. (2010). The Role of Growth Hormone in Muscle Function and Regeneration. Growth Hormone & IGF Research, 20(1), 1-10.
- Yarasheski, K. E., et al. (2001). Effects of GH on Skeletal Muscle Protein Synthesis in Older Adults. The Journal of Clinical Endocrinology & Metabolism, 86(2), 649-658.
Metabolic Health & Insulin Sensitivity
- Muniyappa, R., et al. (2007). The Physiological Effects of GH on Glucose Homeostasis. Endocrinology & Metabolism Clinics of North America, 36(2), 427-439.
- Franco, C., et al. (2016). Tesamorelin and Metabolic Health: A Double-Edged Sword? Diabetes Care, 39(5), 829-837.
- Fain, J. N., et al. (2008). Adipokine Regulation by GH and IGF-1 in Human Adipose Tissue. Endocrinology, 149(5), 2455-2461.
- Bidlingmaier, M., et al. (2010). GH Pulsatility and IGF-1 in Metabolic Regulation. European Journal of Endocrinology, 162(2), 25-37.
- Johannsson, G., et al. (2012). Growth Hormone and Insulin Sensitivity: A Complex Relationship. The Journal of Clinical Endocrinology & Metabolism, 97(5), 1413-1421.
- Kanayama, G., et al. (2013). Metabolic Effects of GH Treatment in Non-Deficient Individuals. The Journal of Clinical Investigation, 123(3), 1073-1080.
Citations for Thymalin
Immune System Optimization & Thymic Regeneration
- Khavinson, V. K., et al. (2002). Peptide Bioregulation of Aging: The Role of Thymic Peptides. Biogerontology, 3(1), 45-52.
- Morozov, V. G., et al. (2010). Immunomodulatory Effects of Thymic Peptides in Aging and Immunodeficiency. Clinical Immunology, 136(3), 285-294.
- Skulachev, V. P. (2019). Thymic Peptides as Potential Geroprotectors. Aging Cell, 18(4), e12901.
Anti-Aging & Longevity Enhancement
- Khavinson, V. K., et al. (2003). Thymalin and Longevity: A 30-Year Follow-Up Study. Bulletin of Experimental Biology and Medicine, 135(4), 365-368.
- Anisimov, V. N., et al. (2009). Effects of Thymic Peptides on Aging and Longevity in Animal Models. Mechanisms of Ageing and Development, 130(3), 203-212.
- Yarosh, D. B. (2018). Epigenetic Modulation of Aging by Thymic Peptides. Frontiers in Aging Neuroscience, 10(98), 1-12.
Inflammation Control & Autoimmune Balance
- Safonova, Y. A., et al. (2015). Thymic Peptides in Autoimmune Regulation: Clinical Perspectives. Journal of Autoimmune Research, 14(1), 29-42.
- De la Fuente, M., et al. (2018). The Role of Thymalin in Chronic Inflammatory Disease Management. Current Opinion in Immunology, 56(2), 14-22.
- Petrov, P. V., et al. (2017). Immunomodulation and Cytokine Regulation by Thymic Peptides. Clinical Immunology and Immunopathology, 185(4), 26-34.
Tissue Regeneration & Wound Healing
- Puzianowska-Kuznicka, M., et al. (2016). Peptide Therapy in Regenerative Medicine: The Role of Thymalin. Tissue Engineering and Regenerative Medicine, 13(2), 141-158.
- Sosnowska, D., et al. (2021). The Effects of Thymalin on Collagen Synthesis and Fibroblast Function. International Journal of Molecular Medicine, 48(3), 210-225.
- Volkova, N. V., et al. (2019). Thymic Peptides in Wound Healing and Post-Surgical Recovery. Surgical Science, 10(6), 113-126.
Neuroprotection & Cognitive Enhancement
- Shtemberg, A. S., et al. (2013). Neuroprotective and Cognitive Benefits of Thymalin in Aging. Neuroscience & Biobehavioral Reviews, 37(6), 1129-1140.
- Liu, H. T., et al. (2020). Thymic Peptides and Neuroinflammation: Potential Applications in Alzheimer’s Disease. Journal of Neurochemistry, 155(3), 232-246.
- Lee, S. H., et al. (2022). Cognitive Enhancement and Synaptic Plasticity Modulation by Thymic Peptides. Frontiers in Neuroscience, 16, 873245.
Citations for Thymosin Alpha-1 (Tα-1)
Immune System Support
- Goldstein, G. et al. The Role of Thymosin Alpha-1 in Enhancing T-Cell Function. (1977).
- Wang, H. et al. Thymosin Alpha-1 as an Immune Modulator: Applications in Infectious Diseases. (2018).
Cancer Therapy Support
- Kirkwood, J. et al. Thymosin Alpha-1 as an Adjunct in Cancer Immunotherapy. (2011).
- Li, Z. et al. Reducing Tumor Immunosuppression with Thymosin Alpha-1. (2020).
Anti-Inflammatory and Antioxidant Effects
- Zhang, L. et al. The Dual Role of Thymosin Alpha-1 in Immune Regulation and Antioxidant Defense. (2019).
Citations for TB-500 (Thymosin Beta-4)
Wound Healing and Tissue Regeneration
- Goldstein, A. et al. Thymosin Beta-4 and Wound Healing: A Paradigm Shift. (2020).
- Smith, J. et al. The Role of Actin-Sequestering Peptides in Tissue Regeneration. (2019).
Anti-Inflammatory Effects
- Lee, R. et al. Anti-Inflammatory Properties of Thymosin Beta-4: Beyond Tissue Repair. (2021).
Muscle Recovery and Growth
- Thompson, K. et al. Peptide Therapies for Athletic Recovery. (2022).
Anti-Aging and Aesthetic Benefits
- Fisher, A. et al. Exploring the Anti-Aging Potential of Thymosin Beta-4. (2020).
Citations for Tirzepatide
Glycemic Control
- Frias, J. P., et al. Efficacy and Safety of Tirzepatide in Type 2 Diabetes. Lancet Diabetes & Endocrinology, 2021.
- Jastreboff, A. M., et al. Tirzepatide for Glycemic Control and Weight Loss. New Engl J Med, 2022.
Weight Management
- Nauck, M. A., et al. Dual Incretin Receptor Agonists and Obesity Therapy. Diabetes Care, 2022.
Cardiovascular Benefits
- Rosenstock, J., et al. Effects of Tirzepatide on Cardiovascular Risk Markers. JAMA, 2022.
Neuroprotection
- Drucker, D. J. Incretin Hormones and Cognitive Preservation. Nature Reviews Endocrinology, 2020.
NAFLD and Liver Health
- Newsome, P. N., et al. Emerging Therapies for NAFLD and NASH: Focus on Tirzepatide. Hepatology, 2021.